Somatostatin inhibits stem cell factor messenger RNA expression by Sertoli cells and stem cell factor-induced DNA synthesis in isolated seminiferous tubules.

نویسندگان

  • I Goddard
  • S Bauer
  • A Gougeon
  • F Lopez
  • N Giannetti
  • C Susini
  • M Benahmed
  • S Krantic
چکیده

Immature porcine Sertoli cells have been reported to be targets for the regulatory peptide somatostatin (SRIF), which inhibits the basal and FSH-induced proliferation of Sertoli cells through a decrease of cAMP production. In the present study, we show that SRIF inhibits both basal and FSH-stimulated expression of the stem cell factor (SCF), a Sertoli cell-specific gene. The SRIF-mediated inhibition of forskolin-triggered, but not of 8-bromoadenosine-cAMP-triggered, SCF mRNA expression demonstrates the involvement of adenylyl cyclase in underlying peptide actions. Moreover, these effects require functional coupling of specific plasma membrane receptors to adenylyl cyclase via inhibitory G proteins, because pertussis toxin prevents SRIF-mediated inhibition of SCF mRNA expression. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assays suggest the involvement of sst2 receptors in SRIF actions on Sertoli cells. The biological relevance of these data is supported by an SRIF-mediated decrease in SCF-induced incorporation of [(3)H]thymidine in isolated seminiferous tubules. In situ hybridization and confocal microscopy show that, in seminiferous tubules only, spermatogonia display both c-kit and sst2 receptors. Taken together, these results suggest that SCF-stimulated DNA synthesis can be inhibited by SRIF in spermatogonia, but not in Sertoli and peritubular cells. Combined RT-PCR and immunohistochemical approaches point toward spermatogonia and Leydig cells as the source of testicular SRIF. These data argue in favor of paracrine/autocrine SRIF actions in testis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sertoli cell condition medium can induce germ like cells from bone marrow derived mesenchymal stem cells

Objective(s): Although many researchers have confirmed induction of germ cells from bone marrow mesenchymal stem cells (BMMSCs), there are no reports that confirm spontaneous differentiation of germ cells from BMMSCs. In this study, we have evaluated the effect of adult Sertoli cell condition medium (SCCM) as a mutative factor in the induction of germ cells from BMMSCs. Materials and Methods: ...

متن کامل

Spermatogenesis after transplantation of adipose tissue-derived mesenchymal stem cells in busulfan-induced azoospermic hamster

Objective(s): Adipose tissue-derived mesenchymal stem cells (AT-MSCs) with more potent immunomodulatory effects, greater proliferative potential and secretion of growth factors and cytokines in comparison with bone marrow derived MSCs are more appropriate for cell therapy. The aims of the present study were to evaluate the histomorphometric effect of AT-MSCs allotransplantation on regeneration ...

متن کامل

Follicle stimulating hormone increases spermatogonial stem cell colonization during in vitro co-culture

The complex process of spermatogenesis is regulated by various factors. Studies on spermatogonial stem cells (SCCs) have provided very important tool to improve herd genetic and different field. 0.2 to 0.3 percent of total cells of seminiferous tubules is consist of spermatogonial stem cells. To investigate and biomanipulation of these cells, proliferation and viability rate of cells should be ...

متن کامل

Histomorphometric evaluation of treatment of rat azoosper-mic seminiferous tubules by allotransplantation of bone marrow-derived mesenchymal stem cells

Objective(s): Bone marrow-derived mesenchymal stem cells (BM-MSCs) potentials make them appropriate for cell therapy including ability of differentiation and release of anti-inflammatory cytokines and growth factors secreta. For treatment of azoospermia to induce proliferation and differentiation of germ cells, MSCs transplantation has been introduced. The aim of the present experimental case-c...

متن کامل

Glial cell-line-derived neurotropic factor and its receptors are expressed by germinal and somatic cells of the rat testis.

Glial cell-line-derived neurotropic factor (GDNF) and its receptors glial cell-line-derived neurotropic factor alpha (GFR1alpha) and rearranged during transformation (RET) have been localized in the rat testis during postnatal development. The three mRNAs, and GDNF and GFR1alpha proteins were detected in testis extracts from 1- to 90-day-old rats by reverse transcriptase PCR and Western blottin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biology of reproduction

دوره 65 6  شماره 

صفحات  -

تاریخ انتشار 2001